
J. Fluid Mech. (1989), vol. 203, p p .  51-76 

Printed in Great Britain 

51 

The instability and acoustic wave modes of 
supersonic mixing layers inside a rectangular 

channel 

By CHRISTOPHER K. W. TAM AND FANG Q. H U  
Department of Mathematics, Florida State University, Tallahassee, FL 32306-3027, USA 

(Received 29 February 1988 and in revised form 6 October 1988) 

At high supersonic convective Mach numbers the familiar Kelvin-Helmholtz 
instability of a thin unconfined two-dimensional shear layer becomes neutrally 
stable. In  this paper, i t  is shown that when the same shear layer is put inside a 
rectangular channel the coupling between the motion of the shear layer and the 
acoustic modes of the channel produces new two-dimensional instability waves. The 
instability mechanism of these waves is examined. Extensive numerical computation 
of the properties of these new instability waves has been carried out. Based on these 
results two classes of these waves are identified. Some of the important characteristic 
features of these waves are reported in this paper. In addition to the unstable waves, 
a thorough analysis of the normal modes of a supersonic shear layer inside a 
rectangular channel reveals that there are basically two other families of neutral 
acoustic waves. Examples of some of the prominent characteristics of these neutral 
acoustic waves are also provided in this paper. The new instability waves are the 
dominant instabilities of a confined mixing layer a t  high supersonic convective Mach 
number. As such they are very relevant to the supersonic mixing and combustion 
processes inside a ramjet engine combustion chamber. 

1. Introduction 
Recently there has been a growing interest in acquiring a better understanding of 

the underlying processes involved in supersonic mixing and combustion. Experi- 
mentally it has been found, for example by Ikawa & Kubota (1975), Bogdanoff 
(1983), Papamoschou & Roshko (1986) and Chinzei et al. (1986), that the spreading 
or mixing rates of supersonic shear layers are considerably less than those a t  subsonic 
speeds. The decrease is attributed to the effect of compressibility. Bogdanoff and 
Papamoschou & Roshko suggested that the proper parameter to use as a measure of 
compressibility effect is the ' convective Mach number ', which is defined as the Mach 
number of the flow measured in a moving frame of reference fixed to the dominant 
waves or large structures of the mixing layers. As the convective Mach number 
increases, the spreading rate of a mixing layer decreases. At supersonic convective 
Mach numbers the spreading rate is a factor of four or five smaller than that a t  
incompressible conditions. I n  an effort to provide a plausible reason for the decrease 
in spreading rate with increase in convective Mach number Papamoschou & Roshko 
(1986) demonstrated that both the normalized Kelvin-Helmholtz instability growth 
rate and the normalized spreading rate of two-dimensional mixing layers have 
identical dependence on convective Mach number. The implication is that the 
decrease in mixing rate is directly related to the decrease in the growth of the 
instability of the mixing layer as the convective Mach number increases. 
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Earlier Miles (19.58) used a vortex-sheet model to study the two-dimensional 
instabilities of free shear layers. He showed that a t  high supersonic convective Mach 
number a shear layer became neutrally stable. Subsequent work by Lessen, Fox & 
Zien (1965), Gropengiesser (1970), Blumen, Drazin & Billings (1975), Tam & Morris 
(1980) and others using finite-mixing-layer modcls conclusively demonstrated that 
the Kelvin-Helmholtz instability, which was the principal instability of the shear 
layers, became less and less unstable as convective Mach number increased. In  all the 
above investigations the shear layers were assumed to be free and unconfined. In the 
case of supersonic mixing layers inside a rectangular channel such as those in a 
ramjet combustor, the situation is quite different. The unsteady motion of the shear 
layer is invariably coupled to the acoustic modes of the rectangular channel through 
reflections of the acoustic waves by the channel walls. One of the primary objectives 
of this paper is to show that at supersonic convective Mach number the coupled 
motion produces new families of hydrodynamic instabilities. These instabilities will 
be referred to as supersonic instabilities in the rest of this paper. Further, a t  these 
flow conditions the new instabilities are the dominant instabilities of the flow. 

In contrast to instabilities of shear layers in an open environment, there is an 
absence of analytical studies of the instabilities and wave modes of confined high- 
speed shear layers. Inside a rectangular channel the motion of a shear layer produces 
both unstable and neutral wave modes. A second objective of this work is to study 
the characteristics of and to classify all these wave modes. I n  the course of carrying 
out the classification of these waves into appropriate families an interesting pole 
merging phenomenon in the complex wavenumber space was observed. Detailed 
mapping, however, shows that these are not absolute instabilities in the sense of 
Landau & Lifshitz (1959) and Briggs (1964). A discussion of this pole merging 
phenomenon and its interpretation will be given in a later section of this paper. 

Before proceeding to the analysis of the instabilities of a two-dimensional shear 
layer inside a rectangular channel it is instructive first to examine the physical 
mechanism that causes a shear layer to become unstable, Here for simplicity it will 
be assumed that the mixing layer can be modelled adequately by a vortex sheet. In 
order to show the difference between the supersonic instability waves of confined 
shear layers mentioned above and the Kelvin-Helmholtz instability, the Ackeret’s 
explanation (see Liepmann & Puckett 1947; Papamoschou & Roshko 1986) of the 
Kelvin-Helmholtz instability mechanism will first be briefly reviewed. 

Consider a mixing layer separating flows a t  subsonic convective Mach numbers. 
In the stationary frame of reference let u1 and uz(ul > u2) be the flow velocities on 
the two sides of the vortex sheet and c(uz < c < ul) be the phase velocity of the 
instability wave. Ackeret suggested that one should look a t  the flow in the wave 
frame of reference, i.e. a moving frame travelling a t  the same velocity as the wave 
(see figure 1 a) .  Now in the wave frame of reference the flow in the upper half-plane 
is simply a uniform flow over a wavy wall. At subsonic convective Mach number the 
pressure is lowest at the crests of the wavy wall and highest at the troughs (see 
Liepmann & Roshko 1957, Chapter 8). Similar considerations may also be applied to 
the flow in the lower half-plane. Again the pressure is lowest a t  the crests and highest 
a t  the troughs of the wavy wall. Since the crests and troughs interchange on the two 
sides of the vortex sheet the net result is that  a pressure imbalance exists across the 
vortex sheet. This pressure imbalance is in phase with the vortex-sheet displacement 
and hence would tend to increase its amplitude, leading to the well-known 
Kelvin-Helmholtz instability. 

Suppose the convective Mach numbers are supersonic as shown in figure l (6 ) .  The 
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Vortex sheet 

FIQURE 1. Kelvin-Helmholtz instability mechanism as viewed in the wave frame of reference: +, 
high-pressure region ; - , low pressure region. (a )  Subsonic convective Mach numbers, (6) supersonic 
convective Mach numbers. 

pressure distribution associated with uniform supersonic flow over a wavy wall is 90" 
out of phase with the displacement of the wall. This results in identical pressure 
distributions on both sides of the vortex sheet. The net effect is that the wave 
becomes neutrally stable. This is in agreement with the prediction of hydrodynamic 
stability theory (see Miles 1958). Now if the mixing layer is confined inside a 
rectangular channel the situation is drastically altered by the presence of the walls. 
At supersonic convective Mach numbers, standing Mach wave systems can be 
sustained between the mixing layer and the walls by reflection as shown in figure 2. 
The pressure distribution on a wavy wall due to a Mach wave system is given in the 
Appendix. It is easy to  show that the pressure difference exerted on the vortex sheet 
by the two Mach wave systems above and below is again in phase with the 
displacement of the wavy wall. As in the case of subsonic flow, the pressure 
imbalance at an appropriate wavelength will again tend to increase the amplitude of 
the sinusoidal displacement of the vortex sheet and thus lead to flow instability. 

One of the special features of the supersonic instability waves is that there are 
many such wave modes. This is to be expected since many standing Mach wave 
patterns can be fitted in between the shear layer and the channel walls. Each of these 
patterns can give rise to an instability wave mode. 

In  $2 of this paper the instability problem of a two-dimensional shear layer inside 
a rectangular channel is formulated. The shear layer is modelled first by a vortex 
sheet. The effect of finite shear-layer thickness is then considered by incorporating 
realistic mean velocity, density and species concentration profiles in the governing 
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FIGURE 2. Mach wave systems associated with a thin wavy mixing layer inside a rectangular 
channel at supersonic convective Mach number flow conditions, as viewed in the wave frame of 
reference. 

equations. In $3,  the computation procedure needed to handle a large number of 
wave modes in the complex wavenumber space is discussed. It is shown that at 
supersonic convective Mach numbers all the instabilities are convective. Although a 
pole merging phenomenon occurs, the poles do not give rise to absolute instability. 
Typical numerical results of supersonic instability waves are given in $4. A case for 
which the vortex-sheet shear layer is neutrally stable, if unconfined because the 
convective Mach numbers are highly supersonic, is considered. It is found that, when 
housed inside a rectangular channel, the same shear layer becomes unstable and 
supports two classes of supersonic instabilities. The characteristics of these instability 
waves such as phase velocities, growth rates and finite shear-layer thickness effects 
are provided and discussed. In addition, i t  is found that the coupled motion between 
a shear layer and the acoustic modes of the rectangular channel also gives rise to two 
families of neutral waves. Some features of these waves are highlighted in this 
section. 

2. Formulation and solution 
In this paper the motion of a shear layer inside a rectangular channel separating 

two supersonic streams of gases will be studied by using a vortex-sheet model as well 
as a finite thickness mixing-layer model. The advantage of the vortex-sheet model 
is that a closed-form solution of the dispersion relation can be found. It turns out 
that the dispersion function is relatively simple. This allows extensive numerical 
computations by means of a grid-search technique to locate all the poles (zeros of the 
dispersion function) in the complex wavenumber space. For shear layers with finite 
thickness the dispersion relation can only be calculated numerically. Here this is 
done iteratively by Newton’s method using the vortex-sheet solution as a starting 
value. 

2.1. Vortex-sheet model 

Consider small-amplitude motion associated with two supersonic fluid streams 
separated by a vortex sheet inside a rectangular channel of depth H and breadth B 
as shown in figure 3(a) .  For clarity, subscripts 1 and 2 will be used to designate 
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FIGURE 3. Flow models. (a )  Vortex-sheet model of a confined shear layer. (b) Velocity profile of 
finite-thickness shear- layer model. 

variables associated with the fluid stream above and below the vortex sheet 
respectively. The mean flow is assumed to be in static equilibrium with pressure 
balance, i.e. p ,  = pz ( p  = pressure; overbar denotes mean flow quantity). On starting 
from the linearized continuity, momentum and energy equations of a compressible, 
inviscid fluid it is straightforward to find after eliminating all other variables that the 
perturbation pressures in regions 1 and 2 are governed by the convective wave 
equation : 

(2.1 ) ($+alg~pl - -$VZpl  = 0 (0 < y < H l ) ,  

where a and i~ are the mean flow velocity and the speed of sound respectively. 

dynamic and kinematic boundary conditions a t  the vortex sheet are 
Let y = [(x, z, t )  be the displaced position of the vortex sheet. Then the linearized 

PI("> 09% 4 = PJX,  0 , 2 ,  t )  (Y = 0)> (2.3) 
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The boundary conditions at the walls require 
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(2.7) 

To examine the stability characteristics of the flow, a wave solution of the 

aP1 aP2 7&(2,Y, * @ , t )  = 0, a z ( " , Y '  +@,t)  = 0. 

following form which satisfies boundary condition (2.7) will now be sought: 

Substitution of (2 .8)  into (2.1) and (2.2) yields ordinary differential equations for 
and $2. The solutions of these equations that satisfy boundary condition (2.6) 

are 

where 
1;1 =Acos[A,(H,-y)l, $2 = Ccos[~ , ( y+H, ) I ,  (2.9) 

(2.10) (2xm'B)2"} (m = 0 , 1 , 2 , 3 ,  ...). 
A, = [(w-u1k)2/a;-kJG2- 
A, = [ ( W - R 2 k ) 2 / $ - k 2 -  (2nm/B)2]i 

The branch cuts for A, and A, are chosen so that 

0 d arg (A,), arg (A,) < n .  (2.11) 

Finally, upon substituting (2.8) and (2.9) into the dynamic and kinematic 
boundary conditions (2.3)-(2.5), the condition for the existence of a non-trivial 
solution leads to the following dispersion relation : 

a; A, a; A, 
Y 2 ( W - - 2 k ) 2  Y1(W-@1 

D G  sin (A, H , )  cos (A, H , )  + sin (A,H,) cos (A, H 2 )  = 0, 

(2.12) 

where y is the ratio of specific heats. 

2.2. Transformation to an  equivalent two-dimensional case 
Dispersion relation (2.12) includes all the three-dimensional wave modes. I t  is easy 
to show that the three-dimensional dispersion function characterized by the lateral 
mode number m can be transformed to  an equivalent two-dimensional case by the 
following change of variables. Let 

(2.13) 

The two-dimensional equivalent of the dispersion function is 

a; A,* a; A,* 
Y 2 ( W - ? z , * k * ) 2  y,(w - a,* k*)2 

L)* = sin (A,* H , )  cos (A: H , )  + sin (A: H , )  cos (A,* H,) = 0, 

(2.14) 

where 
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FIGURE 4. Complex k-plane showing branch-cut configuration of A, and A, for which supersonic 
instability is possible (a, > eZ). Wavenumbers of supersonic instability waves are located in the 
shaded region. 

2.3. Condition for the existence of supersonic instability waves 
Consider first the case of two-dimensional disturbances (m = 0). The branch points 
of h of (2.10) in the complex k-plane are (temporarily omitting the subscripts 1 and 

w w 
E ,  = 7 k, = 7. 

U - a ’  U + G  
(2.15) 

Now in the discussion on the physical mechanism that leads to the existence of 
supersonic instability waves it is implicit that in the wave frame of reference the 
convective Mach numbers of the flows on the two sides of the shear layers must be 
supersonic. Suppose a1 > a,, then the phase velocity of an unstable shear wave would 
lie between these two values, namely, u1 > Re (w/k) > a,. In the complex k-plane it 
is readily shown that the condition for supersonic convective Mach number to exist 
on both sides of the shear layer is that the branch-cut configuration must be as shown 
in figure 4. In this figure the supersonic convective Mach number condition is 
satisfied by all the wavenumbers lying in the vertical strip between branch points 
A ,  and B,. Thus if one is interested only in the poles of the supersonic instability 
waves it is only necessary to  locate the zeros of the dispersion function in this vertical 
strip. The condition tha t  branch point B, lies to the right of A ,  is k5, > kA,(kA,, k51 
are the wavenumbers of the branch points A ,  and B, respectively). This gives the 
condition for the existence of supersonic instability waves to be 

tz1-a2 > &,+a,. (2.16) 

For three-dimensional disturbances it is easy to find that the corresponding 
condition is 
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For large ?n (with w fixed), inequality (2.17) cannot be satisfied, so that the highcr- 
order three-dimensional modes are unable to exhibit supersonic instability. At low 
frequency, w + O  (with m =+ 0) inequality (2.17) again cannot be satisfied. Thus there 
is no low-frequency three-dimensional supersonic instability wave. 

2.4. Finite-thickness shear-layer model 

To account for finite shear-layer thickness effects a model with a velocity profile as 
illustrated in figure 3 ( b )  will be used. For simplicity i t  will be assumed that the gases 
on the two sides of the mixing layer are inviscid, non-heat-conducting and non- 
reactive. Further, molecular diffusion processes, although present, will be neglected. 
Let C, be the mass fraction of species 1 of the gas mixture, Since there are only two 
gas species it follows that the mass fraction of species 2 is equal to (1  --C,). The 
continuity, momentum and energy equations of the gas mixture in the shear layer 
may be written in the form 

dP -+V. (pu)  = 0 ,  (2.18) 
at 

(2.19) 

(2.20) 

where p,  u, p arc the density, velocity and pressure of the gas mixture. h, the enthalpy 
of the gas mixture, is related to the temperature T and specific heats at constant 
pressure, C,, and Cp2 ,  of the gas components by 

(2.21) 

The pressure of the gas mixture is equal to the sum of the partial pressures of the two 
gas components according to Dalton's law. This leads immediately to the equation 
of state for the gas mixture 

where R = C,R, +(1 -C,)R,, R,  and R ,  are the gas constants of the two gas 
components. The above equations do not form a complete set. They are to be 
supplemented by the species transport equation which, upon imposing the 
assumption of negligible diffusion, gives 

h = [Cp,  C, + Cp2( 1 - C,)] T. 

P = PRT, (2.22) 

p ---'+U.VC, = o .  r: 1 (2.23) 

The timc-independent parallel-flow solution of the above system of equations is 

u = ~(y)e^,, C, = c,(Y), p = p(y), p = j? = constant, (2.24) 

where ,u, c,, p are arbitrary functions of y. 
To find the instability characteristics of the shear layer inside a rectangular 

channel i t  is only necessary to  solve the linearized form of (2.18)-(2.23). The 
linearization is to be carried out about the mean flow solution of (2.24). Let p(x,y, 
z, t )  be the perturbation pressure associated with the small-amplitude disturbances 
superimposed on the mean flow. Under the locally parallel-flow approximation p 
may be taken to be of the form 

= $(y) ei(kz-wt) cos (2mnz/B) (m = 0 ,1 ,2 , .  . .). (2.25) 
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Solution (2.25) automatically satisfies the boundary conditions at the two sidewalls 
z = +A$. - Substituting (2.25) and other dependent variables of similar form into the 
linearized equations of motion and eliminating all other variables, it  is found that the 
equation for $(y) is 

where a = (yp/p) i  is the speed of sound of the gas mixture. 7, the ratio of the specific 
heats of the gas mixture, is 

7 =  CP1 Cl+ C,J - Cl) 

cvl Cl + C#*( 1 - Cl) . 
In the above expression C,, and Cvz are the specific heats a t  constant volume of gas 
species 1 and 2 respectively. The solid surface boundary condition on the top and 
bottom walls of the channel requires 

_ -  d'-O at y = H ,  and y=-H, .  (2.27) 

Outside the shear layer, i.e. y > 6 or y < -6,  the flow is uniform so that the second 
term of (2.26) vanishes. The solution of this equation that satisfies boundary 

dY 

condition (2.27) is 
fj = Ecos[A,(H,-y)l ( H ,  2 y 2 4, (2.28) 

p=Fcos[A2(y+H2)] ( - S 2 y > , - H 2 ) ,  (2.29) 

where A, and A, are given by (2.10) and E and F are arbitrary constants. To find the 
solution of (2.26) inside the shear layer one may use (2.29) as a starting solution and 
integrate the equation numerically from y = -6 until y = 6 is reached. Let the 
numerical solution be Ff(y). At y = 6 this solution must match that of (2.28). The 
continuity of $ and its derivative leads to the following equations : 

Ecos[h1(H1-6)]-Ff(6) = 0, 

A, E sin [A,(H, - S)] -Ff'(6) = 0. 

For non-trivial solution of the unknowns E and F the determinant of the coefficient 
matrix D must be equal to zero. This yields the eigenvalue equation 

D = - c o s [ A , ( H , - ~ ) ] ~ ' ( ~ ) + A ~ ~ ~ ~ [ A , ( H ~ - S ) ] ~ ( ~ )  = 0. (2.30) 

In general, D is not equal to zero unless for a given w ,  k takes on special values 
(eigenvalues). To determine k,  Newton's iteration method may be applied to (2.30). 
As a starting value in the iteration process the value of k obtained by the vortex- 
sheet model may be used. 

3. Computation procedure and pole merging phenomenon 
To describe the general motion of a supersonic shear layer inside a rectangular 

channel infinitely many normal modes are needed. If a vortex-sheet model is used to 
represent the shear layer, these normal modes are given by the zeros (or poles) of the 
dispersion function D(w, k) of (2.12). In this paper an effort will be made to classify 
these wave modes (both neutrally stable and unstable) into families according to 
their physical and mathematical properties. Since the number of wave modes 
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o-plane 

k-plane I 
FIGURE 5.  Trajectories of the poles or zeroes of D(w, k )  as the w-contour is pushed toward the real 

axis following the Briggs' criterion. M ,  = 3.4(He), M, = 1.6(N2), H I  = H,,  ti,/&, = 1.63. 

considered is very large an efficient way of determining the zeros of D(w,k) for a 
prescribed complex or real value of w is needed. I n  the present investigation this is 
done by means of a grid-search procedure. 

The dispersion function, D ( w ,  k), of (2.12) involves only elementary trigonometric 
functions, so the numerical value of the function can be easily calculated. To 
implement the grid-search technique a finite region of the complex k-plane in which 
the normal modes are to be determined is first selected. This region is then subdivided 
into smaller regions by a rectangular grid. The values ofD(w, k) a t  each grid point are 
calculated. A contour subroutine which is capable of using this set of values to 
determine and to draw the curves Re (D) = 0 and Im (D) = 0 in the k-plane by two- 
dimensional interpolation is called. The intersection of these two families of curves 
are the approximate roots of the dispersion function. To refine the values of the roots 
or poles Newton's iteration method is used. 

In this work the primary interest is the spatial instability wave modes. For spatial 
instability waves w is real. However, it is known that in determining these waves i t  
is not sufficient to set w to a real number and look for the zeros or poles of D in the 
complex k-plane. One must recognize that waves can propagate in the positive or 
negative x-direction. Such a distinction is absolutely necessary. Failure to do so may 
erroneously treat an evanescent wave as a spatially growing wave and vice versa. 
Here the criterion for distinguishing between an evanescent and a spatially 
amplifying wave established by Briggs (1964) will be followed. According to Briggs, 
if one is interested in spatial instability waves of frequency Q one should start 
calculating the roots or poles of the dispersion function by setting the real part of w 
equal to Jz and the imaginary part of w to be a large positive value. Zeros or poles 
of D lying in the upper half-k-plane represent wave propagating in the positive x- 
direction while those in the lower half-k-plane represent waves propagating in the 
negative x-direction. Figure 5 shows a typical example. For this case, the parameters 
of the mean flow have been taken to be: 

Fluid 1 ; 
Fluid 2;  

Helium, M ,  = 3.4, y1 = 5. 
Nitrogen, M ,  = 1.6, y, = g. 

H ,  = H,, t t , /~ ,  = 1.63, El/%, = 3.46. 
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FIGURE 6. Trajectories of a pair of poles in the k-plane showing pole merging phenomenon. 

With wH/a, = 15.66+4.6i the poles of D are located in the k-plane by the grid- 
search procedure described above. In  figure 5 these poles are denoted by crosses. Also 
shown in this figure are the branch cuts of A, and A,. Now to obtain the normal mode 
solutions the point w must be pushed towards the real axis with real w kept fixed in 
the complex w-plane. Numerically this is carried out by reducing the imaginary part 
of o by small increments until i t  is equal to zero. For each intermediate value of w 
the grid-search procedure is implemented. I n  this way the movement of all the poles 
or zeros of D ( w ,  k)  can be traced during this w-contour deformation process. The 
trajectories of the poles are shown in figure 5. Some of the poles in the vertical strip 
between branch points A ,  and B, crossed into the lower half-k-plane as o is pushed 
toward the real axis. These are the supersonic instability wave modes. In  figure 5 the 
positions of the poles in the k-plane corresponding to w on the real axis of the w-plane 
are denoted by small circles. They are the normal modes of the flow. In  addition to 
the supersonic instability wave modes there are two families of poles lying on the real 
k-axis; one to the left of branch point A,,  the other to the right of branch point B,. 
These are the neutral acoustic wave modes. Some poles remain in the upper half- 
k-plane. They represent spatial evanescent waves. It is to be noted that all the poles 
of the dispersion function originated from the upper half-k-plane so that the 
supersonic instability waves are convectively unstable and all the waves propagate 
in the downstream direction. 

In  the course of performing the w-contour deformation process according to 
Briggs' criterion, a pole merging phenomenon was observed. This occurs when special 
values of 52 are chosen. When Re ( w )  is set equal to one of these special values, two 
neighbouring poles would merge during the w-contour deformation process. An 
example is shown in figure 6 a t  52H/al = 6.22. The trajectories of bhe two 
neighbouring poles in the range 7.0 < Re (kH) < 9.0 and 6.0 < Re (oH/al) < 6.5 are 
plotted in this figure. The trajectories exhibit a saddle configuration. For the special 
case of Re ( w H / @ , )  = 6.22 the two poles first approach each other as Im ( w H / a , )  is 
reduced. They merge, split apart and then move in opposite directions. Now it is 
important to point out that  the observed pole merging phenomenon does not imply 
absolute instability. This is because both poles originated from the same side of the 
k-plane so that pole pinching, a necessary condition for absolute instability (see 
Briggs 1964), does not occur. In the present case the w-contour can be pushed all the 
way to the real axis without any difficulty. Therefore, no special treatment is needed 
in calculating the contributions of the two poles. 

3-2 
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In  classifying wave modes it is a usual practice to associate a wave mode with a 
particular pole in the k-plane. However, with pole merging, such an identification 
scheme would lead to discontinuities in the k = k ( w )  relationship and, perhaps, 
even confusion. To see this, consider the poles in figure 6 as w (real) increases. For 
wH/ul  < 6.22, the first pole denoted by trajectories A,  and B, is an unstable pole with 
k, < 0. However, for o H / G ,  > 6.22 this pole, now having trajectories C ,  and D,  which 
terminate on the real k-axis, represents a neutral acoustic wave. Clearly an apparent 
discontinuity takes place a t  WHIG,  = 6.22. On the other hand the second pole with 
trajectories A,, B,, C, and D,  also exhibits a similar discontinuity. But the nature of 
the discontinuity is exactly opposite to that of the first pole. Now if the poles are not 
singled out individually but are considered as a pair simultaneously then there is 
always a neutral wave mode and an unstable mode with no discontinuous behaviour 
as w H / u ,  varies. This is so even across the value 6.22. The point here is that merged 
poles have lost their individual identity. Both poles must be taken into consideration 
at  the same time. When the poles are treated in this way no confusion can arise. 

4. Numerical results 
As an illustration of the properties of supersonic instability waves associated with 

a two-dimensional shear layer inside a rectangular channel, the case of a supersonic 
mixing layer formed by helium (region 1) on one side and nitrogen (region 2) on the 
other will be discussed here. The mean flow conditions in this case study are 

M I  = 4.5, M ,  = 1.6, H ,  = H, ,  a,/@2 = 1.29, 

y 1 - 3 ’  - 5 y 2 - 5 ’  - 1 H = B (for three-dimensional waves). 

Under these highly supersonic mean flow conditions it is easy to show that for a thin 
vortex-sheet shear layer in an unconfined environment, the familiar two-dimensional 
Kelvin-Helmholtz wave is neutrally stable (see Miles 1958). Thus the two- 
dimensional instability wave modes obtained in the present calculation are not 
related to the Kelvin-Helmholtz instability. They are new instability waves 
generated by the coupling of the motion of the shear layer and the acoustic modes 
(reflections) of the rectangular channel. It will be shown later that for shear layers 
with finite thickness the first two-dimensional mode of the new instability waves has 
the highest spatial growth rate. 

Reflections by the surrounding walls on the coupled disturbances involving the 
acoustic modes of the channel and the oscillatory motion of the shear layer produce 
several families of instability and neutral waves. Numerical solutions of the 
dispersion function (2.12) indicate that there are basically four families of wave 
modes; two being unstable and two neutral. They will be referred to as class A ,  B, 
C and D waves. For clarity, each mode of a wave family will be designated by two 
integer numbers (m,n):  n is the transverse mode number primarily related to 
reflections from the top or bottom wall of the rectangular channel ; m is the lateral 
mode number related to reflections from the two sidewalls. Thus within each class or 
family of waves the modes are labelled as Am,,B,,, C,, and Dmn(m = 0 ,1 ,2 ,  ... ; 
n = 1 , 2 , 3 ,  ...) respectively. 

4.1. Results of vortex-sheet model 
In this subsection the two-dimensional wave modes (m = 0) will first be examined. 
Numerical solutions of the dispersion function (2.12) for spatial instability following 
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FIGURE 7. Dispersion relation of class A supersonic instability waves. M ,  = 4.5(He), 
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FIQURE 8. Dispersion relation of class B supersonic instability waves (-) and class C neutral 
acoustic waves ( - - - - - ) .  M ,  = 4.5(He), M ,  = 1.6(N2), H ,  = H , ,  aJ&, = 1.29, m = 0. 
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FIGURE 9. Phase velocity of class A supersonic instability waves. M ,  = 4.5(He), M ,  = l.6(Nz), 
H ,  = H,, a,/& = 1.29, m = 0. 0, Wave with maximum growth rate. 
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FIQURE 10. Phase velocity of class B supersonic instability waves. M ,  = 4.5(He), M ,  = l .6(N2), 
H ,  = H,, BJa, = 1.29, m = 0. 

the Briggs' (1964) procedure shows that the flow is convectively unstable. There are 
basically two families of supersonic instability wave modes. They will be referred to 
as class A and class B modes. The dispersion relations (real part of the wavenumber 
as a function of frequency) of these waves are given in figures 7 and 8. Since these 
unstable waves exist only when the convective Mach numbers are supersonic they 
can be found only in the sector 

of the (w,  k,) plane. The phase velocities of the class A supersonic instability waves 
generally decrease as the wave frequency increases. This is shown in figure 9. On the 
other hand, the phase velocities of class B supersonic instability waves behave 
differently. They increase with frequency as illustrated in figure 10. Figure 11 shows 
the growth rate of the class A instability wave modes. For a given mode the wave is 
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FIGURE 11. Spatial growth rate of class A supersonic instability waves. M, = 4.5(He), 
M, = 1.6(N2), al/E2 = 1.29, H ,  = H, ,  m = 0. 
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FIGURE 12. Spatial growth rate of class B supersonic instability waves. M, = 4.5(He), 
M ,  = 1.6(N2), a1/a2 = 1.29, H I  = H, ,  m = 0. 

unstable only over a finite frequency band. But collectively there is a t  least one, and 
often more than one, unstable wave mode for a given frequency. Figure 12 provides 
the growth rate of the class B instability waves. For the chosen mean flow conditions, 
class B waves have smaller growth rates than their class A counterparts. Hence it 
appears that they are less important. 

For thin shear layers, typical pressure distributions (eigenfunctions) associated 
with class A supersonic instability waves are given in figure 13. These eigenfunctions 
are characterized by oscillations in the direction normal to the mean flow. These 
oscillations are characteristic features of standing wave patterns. Roughly speaking, 
they indicate the number of nodes and antinodes resulting from acoustic reflections 
from the channel walls. Figure 14 shows similar eigenfunctions of class B supersonic 
instability waves at the maximum growth rate. Unlike the eigenfunctions in figure 
13, which have standing wave patterns primarily in the region below the shear layer 
(region 2), they exhibit oscillations mainly in the region above the shear layer. 
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FIGURE 13. Eigenfunctions (pressure) of class A supersonic instability waves at maximum growth 
rate and class D neutral acoustic waves. (a) -, Mode A,,, w H / a ,  = 1.8, kH = 2.9434.6451; ---, 
Mode Do,, w H / f i ,  = 2.25, kH = 2.4. (b) -, Mode A,,, w H / a ,  = 4.2, kH = 6.940-0.8381; ---, 
Mode Do,, w H / a ,  = 3.95, kH = 4.3. ( c )  -, Mode A,,, w H / g ,  = 5.8, kH = 8.9784.9741; ---, 
Mode Do,, w H / a ,  = 4.0, kH = 2.52. 

I I 

0 0.5 1 .o 

. ------- 

0 0.5 1 .o 
IPI lpl lpl 

FIGURE 14. Eigenfunctions (pressure) of class B supersonic instability waves at maximum growth 
rate and class C neutral acoustic waves. (a) -, Mode B,,, oH/t i ,  = 0.80, kH = 1.7514.2181; 
-__ , Mode C,,, w H / a ,  = 1.0, kH = 3.207. ( b )  -, Mode B,,, o H / @ ,  = 1.80, kH = 4.038-0.257i; 
--- , Mode C,,, wH/t i ,  = 2.0, kH = 5.687. ( c )  -, Mode B,,, w H / a ,  = 3.8, kH = 7.6974.528i, 
--_ , Mode C,,, wH/f i ,  = 3.0, kH = 8.174. 

Obviously these two classes of waves are formed by reflections principally from either 
the top or the bottom wall of the channel. 

In addition to the two classes of supersonic instability waves there are basically 
two families of neutral acoustic waves. These neutral acoustic modes are not 
unrelated to  the instability waves modes. The dispersion relations (i.e, k = k(w) )  of 
the first family of neutral acoustic modes (referred to as class C modes) are given 
(dotted curves) in figure 8. As frequency increases these neutral acoustic waves 
evolve into class B supersonic instability waves. The real part of the wavenumber of 
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FIGURE 15. Dispersion relation of class D neutral wave modes (---). M ,  = 4.5(He), 
M ,  = 1.6(N2), HI = H,,  aJa, = 1.29, m = 0. 
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FIGURE 16. Effect of finite shear-layer thickness on the growth rate of class A supersonic instability 
waves. MI = 4.5(He), M ,  = 1.6(K2), H ,  = H,, iiJh, = 1.29. -, 6,/H = 0;  ---, 6JH = 0.05; 
_ _ _ _ _  , 6w/H = 0.1; -.-, 6 J H  = 0.15. (a) Mode Ao1; ( b )  mode Ao2.  
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FIGURE 17. Dependence of the maximum spatial growth rate of the first four class A supersonic 
instability wave modes on vorticity thickness of the shear layer. 'm = 0, M, = 4.5(He), M ,  = 
1.6(K2). 

the neutral C mode and that of the unstable B mode form a continuous function of 
the wave frequency, while the imaginary part of the wavenumber is zero for the 
neutral wave and negative for the unstable wave. The dispersion relations of the 
second family (class D )  of neutral acoustic waves are shown in figure 15. Typical 
wave patterns or eigenfunctions of these waves are provided in figures 13 and 14. 
They form standing wave patterns characteristic of normal acoustic modes inside a 
duct. As in the case of supersonic instability waves, all the neutral acoustic waves 
propagate in the downstream direction. This is to be expected since the flows on both 
sides of the shear layer are supersonic. 

4.2. Results of jinite-thickness shear-layer model 

The effect of finite shear-layer thickness has been investigated using the flow model 
described in 4 2.4. In  the present computations the mean velocity and concentration 
profiles are assumed to be in the shape of hyperbolic tangent functions. Specifically, 
the following mean flow profiles are adopted 

~ ( y )  = i [ ~ ,  + Q, + (a1 -a2) tanh (2y/s,)], 

cI(y) = +[l + tanh (2y/S,)], 

where 6, is the vorticity thickness of the shear layer. The mean density p i s  obtained 
by the Crocco's relation. The total temperatures of both streams adjacent to the 
shear layer are not assumed to be the same. Figure 16 shows the change in growth 
rate of the first two modes of class A waves as a function of the vorticity thickness 
of the shear layer. As the shear layer becomes thicker and thicker, a t  a fixed 
frequency, the growth rate of the supersonic instability waves decreases. The same 
is true for class B instability waves. Figure 17 gives the dependence of the maximum 
spatial growth rates of supersonic instability wave modes A,,,A,,,A,,,  and A,, on the 
vorticity thickness of the shear layer. Of importance is the observation that, while 
for very thin shear layers the maximum growth rates of the lower-order modes are 
smaller than those of the higher-order modes, the reverse is true for thicker shear 
layers. In practical situations it is expected that the A,,  mode is most dominant. 
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FIGURE 18. Effect of finite shear-layer thickness on (a) the wavenumber and ( b )  the phase velocity 
of class A supersonic instability waves. MI = 4.5(He), M ,  = 1.6(K2), H I  = H,,  iZl/iZz = 1.29. -, 
SJH = 0; ---, SJH = 0.05; -----, S J H  = 0.1; -.-, 6,/H = 0.15. 

Figure 18 shows the effect of shear-layer thickness on the dispersion relations and 
the phase velocities of the class A supersonic instability waves. It is clear from these 
results that the phase velocities are only slightly affected by the finite-thickness 
effect. The same is true for class B supersonic instability waves. On the other hand, 
shear-layer thickness does have a profound effect on the growth rate of these waves. 
This is illustrated in figure 19. At a reasonable shear layer thickness, the growth rates 
of class B instability waves are so greatly reduced that they may, for all intents and 
purposes, be regarded as neutral waves. 

The eigenfunctions of the most unstable A,, supersonic instability waves at 
different shear-layer thicknesses are given in figure 20. On comparing these figures 
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FIQURE 20. Effect of finite shear-layer thickness on the eigenfunction of A,, supersonic instability 
wave mode. Shown are waves at maximum growth rate. M I  = 4.5(He), M ,  = 1.6(N2). (a)  SJH = 
0.05, wH/ul  = 1.8, kH = 2.9724.5101. (b)  S,/H = 0.1, w H / f i ,  = 1.8, kH = 2.9824.4263. ( c )  S,/H = 
0.15, wH/u ,  = 1.8, kH = 2.975-0.357i. 

with figure 13 (a) ,  which corresponds to the case of zero thickness, it  is evident that 
there is no qualitative difference. The effect of using a continuous velocity profile 
shear-layer model is to smooth out the apparent discontinuity in the slope of the 
eigenfunction of the vortex-sheet model. The above remarks are also applicable to 
the higher-order modes and to class B supersonic instability waves. 

4.3. Three-dimensional wave modes 
Owing to reflections from the two sidewalls a shear layer inside a rectangular channel 
is also subjected to  three-dimensional instabilities. I n  the present investigation these 
three-dimensional instability modes have been studied using both the vortex-sheet 
and the fini te-thickness shear-layer models. Generally speaking, the characteristics 
of the three-dimensional instability wave modes are found to be similar to those of 
the corresponding two-dimensional modes. For shear layers that are reasonably thick 
numerical results indicate that the class A two-dimensional supersonic instability 
waves have larger spatial growth rates than their three-dimensional counterparts. 
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FIGURE 21. Dispersion relation of three-dimensional class A supersonic instability waves. 
M ,  = 4.5(He), M ,  = 1.6(N2), H ,  = H ,  = A$, ~ , / a ,  = 1.29, m = 1, 6,” = 0. -, instability wave; 
_ _ _ _ _  , neutral wave. 
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FIGURE 22. Spatial growth rate of three-dimensional class A supersonic instability waves. 
M ,  = 4.5(He), M ,  = 1.6(N2), H ,  = H ,  = $B, a,/%, = 1.29, m = 1, 6, = 0. 

Thus experimentally the most likely observable wave belongs to the A,, mode, the 
lowest-order two-dimensional instability wave mode. 

Figure 21 shows the dispersion relations of the m = 1 three-dimensional class A 
instability waves. Except at the very low-Strouhal-number range, qualitatively the 
characteristics of these dispersion relations are the same as those given in figure 7. 
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FIGURE 24. Eigenfucntions (pressure) of three-dimensional class A supersonic instahility waves a t  
maximum growth rate. 8, = 0. (a) Mode A,, ,  w H / i i ,  = 2.39, kH = 3.863-1.1871. (b )  Mode A,,, 
w H / i i ,  = 4.18, kH = 6.532-1.089i. ( c )  Mode A,, ,  w H / t i ,  = 5.97, kH = 9.106-1.134i. 

The same is true for class B instability waves. The growth rates of class A instability 
waves are shown in figure 22. Again i t  is found that class A supersonic instability 
waves have significantly higher growth rates than class B waves. They are, therefore, 
expected to be the dominant wave modes. It is interesting to point out that  unlike 
the two-dimensional waves (m = 0) the maximum growth rate of the lowest-order 
mode, A,,, is not small. In fact, its maximum value is greater than those of the A,,, 
A , ,  modes. The phase velocities of the class A supersonic instability waves are given 
in figure 23. In this figure, the waves with maximum spatial growth rates are 
indicated by a small circle. Their values are nearly the same as their two-dimensional 
counterparts shown in figure 9. 

The dispersion relations of the m = 1 three-dimensional class G and D neutral 
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FIQURE 25. Dependence of the maximum spatial growth rate of the A,, and A,, mode instability 
waves on vorticity thickness of the shear layer. M, = 4.5(He), M2 = 1.6(N2), H ,  = H ,  = 18, 
BJii, = 1.29. 

waves are similar to their two-dimensional counterparts. As beofre, class C waves are 
linked to class B instability waves. Both families are waves produced primarily by 
reflections off the top wall of the rectangular channel. On the other hand, class A and 
D waves are formed mainly by reflections off the bottom wall. Figure 24 shows 
typical eigenfunction (pressure) distributions of class A supersonic instability waves 
a t  the maximum growth rate over the entire height of the channel. I n  the lateral 
direction, the distribution has a cosine function dependence. Qualitatively, figures 24 
and 13 are very similar. This similarity is also true, although not shown here, for class 
B, C and D waves. 

The effect of finite shear-layer thickness on the growth rate of three-dimensional 
supersonic instability waves is shown in figure 25. In  this figure the variations of the 
maximum growth rates of the A,,, A,, modes are given as functions of the vorticity 
thickness of the shear layer. As can easily be seen the growth rates of these three- 
dimensional waves decrease rapidly with increase in shear-layer thickness. The rate 
of decrease is faster than those of the corresponding two-dimensional wave modes 
(see figure 17). At SJH 2 0.1 the lowest-order two-dimensional mode, namely the 
A,, mode, has the highest spatial growth rate. The implication appears to be that the 
A,, mode probably constitutes the most dominant instability wave in a realistic 
situation. Based on this result it  is, therefore, justified, as has been assumed in the 
present study, to confine one’s primary attention to the low-order, low-dimension 
instability wave modes. The variation of the phase velocity of the most unstable 
wave of the A, ,  wave mode with the vorticity thickness of the shear layer has been 
calculated. Over the range of thickness calculated, the phase velocity is practically 
constant. As a matter of fact, it is numerically equal to that of the most unstable two- 
dimensional (A,, mode) wave. This result strongly suggests that experimentally it 
would not be possible to distinguish between the two-dimensional and three- 
dimensional instability waves by measuring the wave speeds alone. 
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5.  Discussion 
In  this paper it is found that two-dimensional supersonic mixing layers inside a 

rectangular channel may undergo supersonic instabilities. These supersonic insta- 
bility waves are generated by Mach wave systems formed by reflections from the 
channel walls. They exist only when the convective Mach numbers of the flow on 
both sides of the shear layer are supersonic. Two families of these supersonic 
instability waves have been identified. At supersonic convective Mach numbers these 
waves are the dominant instabilities of the flow. The growth rate of these 
instabilities, however, reduces as the thickness of the mixing layer increases. A 
complete normal mode analysis of such a flow has been carried out. The result reveals 
that the flow also supports two other families of neutral acoustic waves, one of which 
is generically related to the supersonic instability waves. 

In the experiments of Papamoschou & Roshko (1986) and Chinzei et al. (1986) 
schlieren observations indicated clearly the existence of large-scale coherent 
structures (waves) in their confined supersonic shear layers. Here i t  is believed that 
these structures (waves) are the supersonic instability waves discussed in this paper. 
Unfortunately, other than the schlieren photographs, no other details and properties 
of these structures were measured. Thus a definitive confirmation of the present 
theoretical results is not possible a t  this time. 

The concept that acoustic reflections could play a role in destabilizing a flow has 
been considered in the past by a number of authors in relation to the instabilities of 
cylindrical vortex-sheet jets. Gill (1965) appears to  be the first to  find and discuss 
these instabilities. However, instead of looking a t  the problem in the wave frame of 
reference and attributing the instability mechanism to the imbalance of in-phase 
pressure perturbations of the Mach wave systems as is done here, these authors 
proposed that the cause of instability was resonant reflections of acoustic waves a t  
certain critical angles. Gill believed that a t  these critical angles of incidence the 
sound waves could trigger a large amount of energy release from the vortex sheet 
(mixing layer) which presumably would drive the instability. Recently Ferrari, 
Trussoni & Zaninetti (1981), Cohn (1983), Payne & Cohn (1984), Zaninetti (1986, 
1987) and somewhat earlier Michalke (1970), following the suggestions of Gill, 
investigated the ‘reflection modes ’ of these jets. Unfortunately, their studies were 
somewhat restricted and focused (except for Payne & Cohn) primarily on temporal 
instabilities. In  addition, their calculated results also appear to be quite fragmentary. 
The present authors, Tam & Hu (1989), have since carried out spatial instability 
calculations of these jets using both vortex-sheet and more realistic finite-thickness 
mixing-layer models. Not surprisingly, certain instability wave modes were found to 
possess characteristics that were similar to the supersonic instability waves described 
in this paper. 

This work was supported by the Office of Naval Research under Grant No. 
N00014-87-J- 1130 and also in part by the Florida State University through time 
granted on its Cyber 205 Supercomputer. 

Appendix 
Consider the vortex sheet in figure 3(a )  as a rigid wall with vertical displacement 

y = y(x) = esincrx. On starting from the linearized equations of motion it is easy to 
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show that the pressure disturbances p ,  and p ,  associated with the steady Mach wave 
systems above and below the wavy wall are governed by the equations 

where M,, and M,, are the convective Mach numbers. The boundary conditions a t  the 
wavy wall are 

(A 3) 
drl v1 drl - v2 -=- - - -- 
d x  Ucl' dx Uc2' 

In (A 3) U,, and U,, are the mean flow velocities in the wave frame of reference and 
v1 and v2 are the y-components of the pertubation velocities. By means of the 
momentum equation, condition (A 3) may be rewritten in terms of the perturbation 
pressures as 

d"r=--- 1 aP1 @rl 1 aP2 
dx2 p1 Gl ay ' dx2 pz G2 ay 

The boundary conditions at  the top and bottom walls are 

It is straightforward to show that the solutions of the above boundary-value 
problems give a pressure difference, A p  = p,(x ,  0) -p2(x ,  0 ) ,  across the vortex sheet in 
the form 

where p is the pressure of the mean flow. This is in phase with the displacement of 
the vortex sheet whenever 01 is such that the coefficient of the expression on the right 
handside of (A 6) is positive. 
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